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 Abstract: The research aims at developing an integrated 

mathematical spreadsheet modelling approach for the 

practical solution of the stochastic crashing problem in 

construction project planning. The proposed project crashing 

methodology is founded upon a synthesis of traditional 

PERT/CPM network scheduling, Monte Carlo simulation, 

and linear programming. The main contribution of the 

introduced model to the existing project management 

literature is that it produces frequency histograms and 

relevant statistics for optimum project crash make span and 

additional cost for project compression, by assuming 

uncertainty and correlation simultaneously for both normal 

and crash durations and direct expenses of project activities. 

The implementation of the model is automated in Microsoft  

Excel© through VBA coding. The research is anticipated to 

assist built environment academics and professionals to 

improve decision-making effectiveness in the planning of 

construction projects. 

 

Keywords: Construction; Crashing; Optimisation; Planning; 

Uncertainty. 

 

1. INTRODUCTION 

 

The ‘project crashing’ problem in construction 

occurs when the project duration is not 

compliant with the scheduled baseline or when 

the owner wishes to accelerate the process for 

using the constructed facility earlier than the 

agreed contract deadline. In such situations, 

there is a need for compressing the project  

execution by narrowing the finish times of 

several critical activities to less than normal 

estimated times but increasing concurrently the 

direct costs due to the additional resources 

required (Figure 1). Such an acceleration may 

include the use of more efficient equipment, 

hiring more workers or subcontracting selected 

parts of the work. Therefore, it is important to 

model the trade-off relationship between time 

saved and additional cost for crashing to 

identify which tasks to crash and to assess the 

associated expenses required to compress these 

activities (Ahipasaoglu et al., 2019). Project 

compression in construction scheduling has 

been recognised since the 1950s, 

simultaneously with the development of the 

critical path method (CPM) by Kelley and 

Walker (1959) and the program evaluation and 

review technique (PERT) reported in Malcolm 

et al. (1959). Since then, a vast amount of 

literature has proposed various solutions to the 

basic deterministic project crashing problem. 

However, the literature addressing the 

stochastic version of the problem is very 

limited (Herroelen & Leus, 2005).
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Figure 1: A typical project crashing graph (Source: De Marco, 2011) 

 

Project managers widely acknowledge that the 

inherent uncertainty, arising from both internal 

and external diverse sources, including 

technical, managerial, or commercial issues, is 

critical for delivering successful construction 

projects (Hillson, 2002). Moreover, as new 

endeavours, projects require implementation of 

previously untried designs and physical 

production processes while accomplishing 

demanding restrictions within usually tight 

time and cost boundaries. According to 

Harrison and Lock (2017), construction is 

prone to damage through uncertainties and 

risks and, it is not surprising, that many 

projects fail by wide margins to meet their 

targets. Hulett (2016) pointed out that schedule 

activity durations are better understood as 

probabilistic estimates of possible durations 

rather than single-point figures about how long 

the activity will last. Thus, typical 

deterministic models for construction planning 

with fixed figures suffer from the assumption 

of absolute certainty and disregard random 

events that normally arise during project design 

and execution. Consequently, in practice, 

expected project duration and cost are 

frequently underestimated (Möhring, 2001). In 

conventional CPM, each activity in the project  

network is assigned a single duration value 

which represents the ‘best guess’ estimate of 

the expected time required to complete the 

activity (Willis, 1985). As a result, project  

duration is also calculated as a single figure by 

summing the deterministic time estimates of 

the critical activities. However, in construction, 

real-life durations are most often not known in 

advance with certainty. Thus, more than 60 

years ago, the classic PERT technique 

introduced the estimation of potential 

variability in the expected project makespan 

(Malcolm et al., 1959). PERT can be used 

either for estimating the probability that a 

project will be completed by a specific 

deadline or to construct a selected confidence 

interval for upper and lower project makespan 

values. The methodology may also be used for 

cost estimation. The following formula is used 

to find the expected mean duration 𝑥̅ of an 

activity i: 

 

𝑥̅i = (ai + 4 ∙ mi + bi)/6        (1) 

 

where: a-optimistic, m-most likely, and b-

pessimistic are the three duration estimates to 

complete the activity under three distinct 

working conditions (Figure 2).
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Figure 2: Classic PERT beta distribution for possible durations (Source: Hajdu & Isaac, 2016) 

 

The estimation of the variance of activity i 

which describes the uncertainty associated 

with its duration, assumes six (6) standard 

deviations between optimistic and pessimistic 

times: 

σi
2 = [(bi – ai)/6]2        (2)                                                                                                                                                          

 

PERT analysis is critically explained in several 

project management textbooks (see Klastorin, 

2004) and Tables for z-values for areas under 

the standard normal curve (probabilities) are 

included in most standard statistics textbooks 

(e.g., Montgomery & Runger, 2014). Roos and 

den Hertog (2020) stated that PERT is still 

widely used in practice (see for instance, 

Onifade et al., 2017) and the technique is 

included in most project management software 

packages because of its low computational 

effort; it only requires three-point estimation of 

the likely values mainly from historical data 

or/and subjective expert judgment by built 

environment professionals. 

 

PERT/CPM planning approaches were 

subsequently extended to Monte Carlo 

simulation (MCS) method which permits the 

analysis of the distribution of the critical path 

without the restricted PERT assumptions (Van 

Slyke, 1963). MCS also facilitates a clearer 

understanding of effective construction cost 

planning. Therefore, assigning probabilistic 

estimates is not limited to project activity 

durations, but probability distribution 

functions can also be attributed to project direct 

expenses. Expert judgment is often producing 

these estimates to arrive at a frequency 

distribution for the final total project cost. This 

cost distribution is then used by management 

to put aside a budget reserve, to be used when 

contingency plans are necessary to respond to 

uncertain events (Kwak & Ingall, 2007). MCS 

is used in the research as the stochastic attribute 

to the developed project crashing model. 

However, a common source of error in MCS is 

the assumption of independency between 

random variables, so that changes in one 

variable does not affect other variables. 

According to Touran and Wiser (1992), this 

supposition may result in inaccurate estimates 

in actual construction projects. This research 

assumes the existence of a positive strong 

correlation not only for uncertain normal 

durations and direct costs of activities but also 

between uncertain crash times and additional 

costs for project crashing. 

 

2. LITERATURE REVIEW ON THE 

STOHASTIC PROJECT CRASHING 

PROBLEM 

 

The review of relevant literature focuses on the 

stochastic project crashing problem beyond 

traditional PERT/CPM techniques. Coskun 

(1984) developed an approach to the stochastic 

crashing problem based on chance constrained 

programming by converting the probabilistic 

problem to an equivalent deterministic 

formulation with normally distributed activity 

times having known mean and standard 

deviation. Wollmer (1985) introduced a 

stochastic version of the traditional 

deterministic linear compression definition, 

using a limited set of crashing options with task 

durations following discrete distributions. 

Dodin (1985) proposed a procedure to find an 

approximate cumulative density function (cdf) 

for project makespan with stochastic task 

durations. Johnson and Schou (1990) defined 

activity times by continuous random variables 

and suggested the use of three rules when 

selecting tasks to compress (the common CPM 

lowest cost slope; the highest criticality index; 
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and the least cost expected value). The authors, 

based on a simulation study of a single small 

sample project, concluded that as the size of 

problems increases, the likelihood of multiple 

critical paths would likely lead to larger 

differentials in the expected cost of different 

rules. Gutjahr et al. (2000) described a 

stochastic branch-and-bound algorithm for 

solving a discrete (binary) version of stochastic 

crashing whereas activity times must be either 

normal or crashed. Feng et al. (2000) presented 

a novel hybrid approach by combining 

stochastic simulation with genetic algorithms 

and also highlighted the need to develop more 

efficient algorithms. 

 

Thus, selected subsequent attempts to analyse 

project crashing problems under uncertainty 

are summarised as follows. Mitchell and 

Klastorin (2007) formulated the objective 

function with direct costs, indirect costs, and 

penalty costs, presenting a stochastic 

compression project heuristic based on 

decomposition of PERT networks into serial 

and parallel subnets. Eshtehardian et al. (2008) 

established a multiobjective fuzzy time-cost 

model. Aghaie and Mokhtari (2009) 

considered a new hybrid approach for the 

stochastic project crashing problem based on 

ant colony optimization technique and MCS by 

using discrete and exponentially distributed 

functions for activity costs and durations, 

respectively. Ke et al. (2009) constructed two 

models for stochastic compression with both 

chance-constrained programming and 

dependent-chance programming. Mokhtari et 

al. (2010) developed a hybrid optimization 

approach based on cutting plane method and 

MCS for stochastic crashing of PERT 

networks. Ke (2014) presented an uncertain 

random time-cost trade-off model with 

dependent chance programming that was built 

with a crisp equivalent model for the case that 

uncertain random parameters in the problem 

are partly random and partly uncertain 

variables. Τhe proposed model was solved 

through the integration of uncertain random 

simulation and genetic algorithms. Kang and 

Choi (2015) considered a stochastic time-cost 

trade-off problem to determine the required 

level of crashing activities so that the expected 

summation of crashing and tardiness costs is 

minimized; they proposed a threshold policy 

that makes crashing decisions contingent on 

projects’ current status, i.e., crashing an 

activity to compensate delayed starting time 

from a predetermined threshold. Yang and 

Morton (2022) recently proposed a branch-

and-cut decomposition algorithm in which 

spatial branching of the first stage continuous 

variables and linear programming 

approximations for the recourse problem are 

sequentially tightened. The algorithm was 

tested by the authors with multiple 

improvements and showed that the solution 

time can be significantly reduced over the 

direct solution of the problem. 

 

It could be argued that the construction project 

crashing problem is rather limited in literature, 

but it still is an active field of research with 

practical implications to all stakeholders 

engaged in projects (clients, project managers, 

and contractors). Therefore, the purpose of the 

paper is to develop an integrated stochastic 

crashing method that can be practical and easy 

to implement for construction professionals. 

The suggested mathematical model which 

assumes that normal as well as crash task 

durations and costs are uncertain and strongly 

correlated, is founded upon classic PERT/CPM 

network techniques and MCS. Transparency in 

the introduced approach is guaranteed by the 

model being setup in an Excel spreadsheet. 

Finally, it is automated through (three discrete) 

VBA (Visual Basic for Applications) codes 

that can also be combined together in a single 

(‘one-click’) code. 

 

3. STOHASTIC PROJECT CRASHING 

INTEGRATED MODEL 

DEVELOPMENT 

 

The rationale behind the research methodology 

with its associated mathematical formulation 

which is used to develop the new integrated 

stochastic crashing model is explained as 

follows: 

 

3.1 Stochastic project network definition 

 

Any stochastic project analysis requires a 

realistic and consistent deterministic work 

schedule, created with the use of information 

from historical projects and best practices for 

the network logic and the appropriateness of 

the sequencing and phasing of activities 

(Mubarak, 2015). Nowadays, project  

scheduling practice is implemented almost 

entirely on AoN networks; the technique is 



  

European Project Management Journal, Volume 13, Issue 1, April 2023  

 

7 

 

 

more flexible because of its simplicity 

(Vanhoucke, 2013) and its enhanced modelling 

capabilities closer to reality (Hajdu, 2013), and 

it is the type of network analysis used in this 

research.  

 

A construction project is defined as an acyclic 

and directed graph G = (N, P) consisting of a 

set of interacting activities (or tasks) to be 

executed with no interruptions with required 

uncertain durations and direct expenses for 

their completion. Each activity normally 

requires resources. Resources may be of 

different types, including financial resources, 

human resources, machinery, equipment, 

materials, energy, etc. The work breakdown 

structure of the project provides a 

decomposition of these activities into i). a set 

of nodes (vertices) N which consists of n 

activities i = {1, …, n} to be scheduled plus two 

auxiliary (dummy, with zero duration and cost) 

activities 0 and n+1 representing project start 

and finish, respectively, and ii). a set of arcs 

(edges) P representing the technological 

precedence relationships (constraints) between 

activities i. A precedence relationship is 

defined as a pair of activities (a, b) where a ≠ 

b, denoting that beginning time of activity a 

affects earliest start time of activity b. A 

normal execution duration xa is assigned as a 

random variable (r.v.) (with bold style 

henceforward) to each activity a and a time lag 

δab to each pair (a, b)∈P. The temporal 

constraint then is δab ≤ sb – sa with sa and sb 

being the start times of activities a and b, 

respectively. Since (a, b)∈P, activity b cannot 

start earlier than δab time units (normally 

working weeks or days) after the start of 

activity a. If δab = xa, the above inequality 

constraint is referred to as immediate 

precedence constraint between activities a and 

b (Schwindt, 2006). AoN network analysis 

then consists of (Oxley & Poskitt, 1996): (1) 

calculating the earliest finish (EFi) times of 

activities i by a forward pass through the 

network and selecting the longest path (i.e. the 

final earliest completion time gives project 

duration); (2) calculating the latest finish (LFi) 

times of activities i by a backward pass through 

the network and selecting the longest path (the 

final latest finish time is the same as its earliest  

completion time and gives the same project 

duration); (3) calculating the total float (TFi) of 

activities i which is either latest start times 

minus earliest start times (LSi – ESi) or latest 

finish times minus earliest finish times (LFi – 

EFi) (since both give the same results); and (4) 

identifying the critical activities, i.e. the ones 

with zero total float, to determine the critical 

path and the project duration under normal 

execution condition Tn. The complete project 

network definition is as follows:  
 

G an acyclic and directed graph, where G 

= (N, P) 

N  set of nodes in project network, each 

node representing an activity i 

P set of arcs in project network, 

representing the technological 

precedence relationships between 

activities i, with each activity pair (a, 

b)∈P where a ≠ b, denoting that starting 

time of activity a affects earliest start 

time of activity b 

i  activity to be executed with no 

interruption, where i = {0, 1, …, n, 

n+1}∈N, with 0 and n+1 being the two 

auxiliary (dummy) activities 

representing project start and finish, 

respectively  

xi  r.v. – normal execution duration 

assigned to each activity i (xi ≥ 0), with 

x0 = xn+1 = 0 

ESi earliest start time of activity i  

EFi earliest finish time of activity i 

LSi latest start time of activity i 

LFi latest finish time of activity i 

TFi total float (or slack) of activity i where: 
 

TFi = LFi – EFi = LSi – ESi    (3)                                                                                                                                
 

δ time lag to each arc (a, b)∈P, where: 
  

δab + sa ≤ sb      (4)                                                                                                                                                            
 

being the temporal constraint with sa and sb the 

start times of activities a and b; if (a, b)∈P, 

activity a cannot start earlier than δab time units 

after the start of activity a; if δab = xa, constraint 

(4) is referred to as the immediate precedence 

constraint between activities a and b assuming 

a finish-to-start (FS) relationship with zero 

leads or lags (FS=0). This is the best-known 

type of precedence relationship 

(Demeulemeester & Herroelen, 2006) and it is 

used in this study. Thus, an activity can only 

start as soon as all its predecessor activities 

have finished. 
 

Tn
 normal execution project duration 

The next step in constructing the model 
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considers the project crashing (or project 

compression) problem setting. 

 

3.2 Project crashing problem mathematical 

formulation 

 

At first, the random estimates yi for duration 

and Yi for direct cost are assigned to each 

activity i for crash completion. Another 

random estimate Xi is assigned to each task i 

representing the direct cost for execution under 

normal condition. Assuming that cost is a 

linear function of time, as in the original CPM 

(Kelley, 1961), the marginal crashing cost for 

each task i is calculated, which is the additional 

cost for shortening each activity by one time 

unit. Hence, if one reduces by one time unit the 

normal duration xi of the critical task with the 

lowest marginal cost of crashing (or else with 

the minimum crash cost slope), it is possible to 

shorten the project duration by one time unit, at 

the expense of the crash direct cost of that 

critical task. The process is repeated until 

another network path(s) becomes critical and to 

the point where all critical activities can be 

fully compressed. Then, a maximum crashing 

point is determined where project duration 

corresponds to the minimum possible 

(compressed) project completion and cannot be 

crashed any further. The mathematical 

formulation of the project crashing problem is 

described as follows:  

 

yi r.v. – crash execution duration assigned 

to each activity i (0 ≤ yi ≤ xi), with y0 = 

yn+1 = 0 

ri 
max maximum time reduction in duration of 

activity i, where: 

 

ri
max = xi – yi         (5)                                                                                                                                                      

 

ri time reduction in duration of activity i 

for crashing the project (0 ≤ ri ≤ ri
max) 

si start time of activity i when crashing the 

project (si ≥ 0) 

ei end time of activity i when crashing the 

project, where: 

 

ei = si + xi – yi       (6)                                                                                                                                                          

 

Tc crash execution project duration, i.e., 

earliest possible completion after project 

crashing 

t time units for project duration, where: 

t = {0, 1, 2, …, Tc, …, Tn}, with 0 < Tc < 

Tn 

Xi r.v. – direct cost for normal completion 

(xi) of activity i 

Yi r.v. – direct cost for crash completion (yi) 

of activity i 

Cx total project direct cost for normal 

completion (Tn), where: 

 

                   Cx = ∑ Xi        (7) 

                                                                                                                                                               

Cy total project direct cost for crash 

completion (Tc), where: 

 

                   Cy = ∑ Yi        (8) 

                                                                                                                                                               

Ai  additional direct cost for crash 

completion of activity i, where: 

 

                     Ai = Yi ‒ Xi     (9)    

                                                                                                                                                    

bi additional direct cost per time unit saved 

from crashing activity i, or crash cost 

slope, where: 

 

bi = (Yi ‒ Xi) / (yi ‒ xi) = ‒ (Ai / ri 
max)                                                                                                              

(10) 

 

Ci crash direct cost for activity I, where: 

 

           Ci = bi ∙ ri     (11)                         

                  

Cc total project direct cost for crash 

completion, where: 

 

     Cc = ∑ Ci = ∑ (bi ∙ ri) (12)                   

   

Ct total project cost for crash completion, 

where: 

 

Ct = Cx + Cc = ∑ Xi + ∑ (bi ∙ ri)    (13)                                                                                                                     

 

The linear programming (LP) mathematical 

model for solving the project crashing problem 

is:  

Objective function 

to minimize crash execution project duration 

Tc, where:  

 

                Tc = sn+1 + xn+1 – n+1      (14)       

                                                                                                                                            

Subject to (Constraints) 

 

  ri ≤ ri
max  (maximum reduction in activity 

duration)          (15)                                              
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ri ≥ 0 (non-negativity for reduction in activity 

duration)      (16) 

 

si ≥ 0 (non-negativity for activity start                  

times)         (17)                                                       

 

Tc ≥ 0 (non-negativity for project duration)                                                                    

(18) 

Tc ≤ Tn (maximum project duration 

constraint)   (19)                                                            

 

si+1 ≥ si + xi – ri (general start time precedence 

constraint)   (20)                                                 
 

The formulated LP model, i.e., the objective 

function (14) and constraints (15)-(20), can be 

put into a spreadsheet with a built-in 

optimisation tool, e.g., Microsoft Excel© 

(Excel) with Solver add-in (Solver) developed 

by Frontline Systems© (www.solver.com), 

which is the software selected in this research. 

The use of spreadsheets has become a matter of 

routine for construction estimators and 

managers by providing ease of implementation 

with flexible presentation facilities, 

adaptability to new information, and capability 

to incorporate uncertainty by generating 

uniform random numbers and simulating 

iterations from specific probability 

distributions (Cooper et al., 2005). Solver can 

handle efficiently both linear (through the 

Simplex algorithm) and non-linear LP 

optimisation problems and is used to solve the 

project crashing linear optimisation problem. 

The key to calculate the optimal solution to a 

LP problem with Solver is to set up a 

spreadsheet model that tracks every decision 

variable of interest to management (e.g., time 

and cost), to identify the changing cells, i.e., 

the variable cells, to set the target cell, i.e., the 

cell that contains the objective function, and to 

specify all required constraints (Moore & 

Weatherford, 2001).  

 

3.3 Modelling correlation between random 

time and cost variables 

 

The uncertain nature of construction 

production environment is embedded into the 

project crashing modelling process by 

assigning a normal probability distribution 

function to the four random estimates: normal 

duration xi ~ N(μx, σx), crash duration yi ~ N(μy, 

σy), normal direct cost Xi ~ N(μX, σX), and crash 

direct cost Yi ~ N(μY, σY) of work activities. The 

normal distribution is chosen because it is 

widely used and intuitively simple (Yang, 

2005), and basically can be described by only 

two parameters familiar to most construction 

managers, the mean and the standard deviation: 

 

             𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

(𝑥−𝜇)2 2𝜎2⁄
    (21)                                                                                                                                  

 

Its main shortcoming is that it is symmetrical 

by definition and cannot be skewed like, for 

instance, the triangular distribution or the beta 

distribution (Vose, 2008). To overcome this 

inflexibility, in this research, the mean and 

variance of the assigned normal distribution 

functions are derived from the previously 

presented traditional PERT equations (1) and 

(2). As a result, the sole initial input required 

by the model from construction experts is 

simply the classic PERT three-point estimates 

a, m, and b. The research further assumes a 

strong positive correlation for each of both 

normal (xi, Xi) and crash (yi, Yi) random pairs 

of task durations and direct costs, with a 

Pearson’s positive correlation coefficient ρ 

with: +0,50 < ρ < +1,00 (Lind et al., 2017). The 

correlation coefficient ρ is a value ranging from 

–1 to +1 and represents the desired degree of 

correlation between two variables during 

sampling. A positive relationship between the 

variables, i.e., when the value sampled for the 

one variable is high, the value sampled for the 

second variable will also tend to be high, are 

indicated by positive values. On the contrary, 

an inverse relationship between two variables 

is indicated by a negative correlation 

coefficient value, i.e., when the value sampled 

for the one variable is high, the value sampled 

for the second variable will tend to be low. 

Thus, when a randomly selected normal or 

crash duration is closer to either the pessimistic 

or the optimistic value, then, the corresponding 

random normal or crash cost will in turn be 

selected closer to either the pessimistic or the 

optimistic cost estimate. To accurately model 

this assumed correlation, four standard normal 

independent random variables, namely Z1, Z2, 

Z3, and Z4 corresponding to random variables 

xi, Xi, yi, and Yi, respectively, are randomly 

generated for each activity from the inverse 

cumulative standard normal distribution N(0,  

1) using NORMSINV Excel function. The 

standard normal distribution is derived from 

the above equation (21) for μ = 0 and σ = 1: 
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𝑓(𝑥) =
1

√2𝜋
𝑒−𝑥

2 2⁄      (22)                                                                                                                                                        

 

If each random pair (xi, Xi) and (yi, Yi) is also 

assumed to follow a bivariate normal joint 

probability distribution (Feng et al., 2000; 

Garvey et al., 2016) with parameters μx, σx, μX, 

σX, ρxX and μy, σy, μY, σY, ρyY, respectively, then 

the following equations can be used to produce 

the required correlated random values: 

 

   xi = σx ∙ Z1 + μx      (23)                                                                                                                                                         

Xi = σX ∙ [ρxX ∙ Z1 + (1 – ρ2
xX)1/2 ∙ Z2] + μX                                                                                                                 

(24) 

   yi = σy ∙ Z3 + μy       (25)                                                                                                                                                                  

Yi = σY ∙ [ρyY ∙ Z3 + (1 – ρ2
yY)1/2 ∙ Z4] + μY                                                                                                                   

(26) 

+0,50 < ρxX, ρyY < +1,00   (27)                                                                                                                                                

with: {Z1, Z2, Z3, Z4}~N(0, 1). 

Generally, in MCS the total variance is 

underestimated when disregarding correlation 

between variables (Touran & Wiser, 1992). 

 

3.4 Embedding Monte Carlo simulation  

 

Construction managers are highly interested in 

obtaining the probability density function (pdf) 

of several critical outputs in their projects, such 

as normal and accelerated completion times, 

normal and increased direct costs due to project 

crashing, or the additional direct costs for 

speeding up the production process. A pdf can 

provide stakeholders better insight into the 

randomness of project performance, assisting 

in more effective decision-making on bidding, 

budgeting, and scheduling (Yao & Chu, 2007). 

The stochastic method selected in the research  

is Monte Carlo simulation (MCS). Using MCS, 

it is possible to calculate different probabilistic 

sets of artificial but more realistic task 

durations and costs, and then to apply a 

deterministic scheduling procedure to each set 

of these durations and costs. The result is the 

estimation of frequency distributions of project 

completion time and cost, so that the 

probability of meeting particular project  

deadlines or budgets can be assessed. MCS 

generates estimates by randomly calculating a 

feasible value for each critical variable from a 

statistical probability distribution function 

which represents the range and pattern of 

possible outcomes. To ensure that the chosen 

values are representative of these uncertain 

outputs, thousands repetitive deterministic 

calculations, known as iterations, are made 

(Bennett & Ormerod, 1984). MCS relies both 

on the central limit theorem (CLT) and the law 

of large numbers. The CLT states that the 

average of a sample of observations drawn 

from a population with any distribution shape 

is approx. normally distributed. More 

precisely, given a distribution with mean μ and 

variance σ², the sampling distribution of the 

mean approaches a normal distribution with a 

mean μ and a variance σ²/n as the sample size 

n increases. The ‘law of large numbers’ states 

that if a stochastic process is sampled 

repeatedly, the mean value converges to the 

true expected value. The CLT holds, i.e., the 

sampling distribution of the mean approaches a 

normal distribution, no matter what the shape 

of the original distribution is.  

 

Each time the LP problem (14)-(20) is solved 

using Solver, a probabilistic (stochastic) 

minimum project duration corresponding to its 

stochastic maximum total project direct cost 

(being the sum of normal direct cost and the 

additional cost for crashing activities) is 

estimated and stored. Furthermore, the 

generation of random values for normal (xi, Xi) 

and crash (yi, Yi) pairs of task durations and 

direct costs, to be inserted in the LP solving 

process, also results in the calculation of the 

probabilistic normal project duration Tn and 

normal total direct cost Cx, for each repetition. 

    

3.5 Outline of sequential steps in model 

implementation 

 

The required ten sequential steps in 

implementing the new stochastic project  

crashing model are: 
 

Step (1)  

Consult construction expert judgment, or 

analyse data from similar past projects, on 

expected uncertainty levels in both normal and 

crash durations and associated normal and 

crash direct costs of each activity, in the form 

of three-point estimates, i.e., optimistic (a),  

most likely (m), and pessimistic (b). 
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Step (2)  

Use the classic PERT formulae (1) and (2) with 

the three-point estimates established in Step (1) 

to calculate the expected values for mean μ and 

standard deviation σ of each activity’s random 

normal and crash durations (x, y) together with 

normal and crash direct costs (X, Y).  

Step (3) 

Generate uniform random z-values for each 

activity from the inverse cumulative standard 

normal distribution N(0, 1), using Excel’s 

NORMSINV built-in function, to model the 

assumed strong positive correlation with a 

correlation coefficient value randomly chosen 

from +0,50 to +1,00 between pairs of normal 

durations and direct costs (x, X), and of crash 

durations and direct costs (y, Y), respectively. 

Step (4)  

Assuming that each pair of estimates for 

normal durations and direct costs, and crash 

durations and direct costs of each task, are 

correlated random variables that jointly follow 

a bivariate normal distribution N(μ, σ, ρ) with 

mean μ and standard deviation σ as calculated 

in Step (2) for each task, generate random pairs 

of estimates (x, X) and (y, Y) using equations 

(23)-(27).  

Step (5) 

Develop an acyclic and directed activity-on-

node (AoN) project network that depicts 

accurately and realistically the technological 

precedence relationships between project tasks 

that must be executed with no interruption, 

including two auxiliary (dummy) project start 

and finish nodes. Use the random durations and 

direct costs generated in Step (4) to perform 

traditional CPM calculations to find the critical 

activities and to identify the critical path, for 

both normal and crash execution conditions. 

Step (6)  

Assuming a linear duration-direct cost 

relationship for each activity, calculate random 

maximum crash times rmax and crash costs per 

time unit saved (e.g., per week or per day) or 

else slope b. 

Step (7)  

Formulate a LP mathematical model with the 

minimisation of project duration as the 

objective function (equation 14) which is 

subject to constraints (15)-(20). Solve this LP 

problem by an efficient LP algorithm or 

software (e.g., Solver) using the results from 

Steps (5)-(6) and store the results for the 

following variables: i). minimum project  

duration after project crashing Tc; ii).  

maximum additional total direct cost for 

project crashing Cc; iii). normal execution 

project duration Tn; iv). normal execution total 

project direct cost Cx; and v). total project cost 

for crash completion Ct. 

Step (8) 

Repeat Steps (3)-(7) iteratively (e.g., 1000 

repetitions or more) to conduct MCS for the 

randomly generated correlated normal and 

crash durations (x, y), and normal and crash 

direct costs (X, Y) of each activity. The 

outcomes from Step (7) for output variables i). 

to v). are again stored after each iteration. 

Step (9) 

Use the results from Step (8) to calculate values 

for mean, variance, standard deviation, 

kurtosis, and skewness and to construct 

relevant frequency histograms and cumulative 

distribution S-curves, for the output variables 

in Step (7). 

Step (10) 

Calculate probabilities and lower/upper limits 

for confidence intervals, associated with 

critical project crashing duration and cost 

information to support managerial decision-

making. The flowchart that follows (see Figure 

3) describes the above ten steps for model 

implementation. The model is further 

automated with three discrete VBA codes (i. 

for generating random values, ii. for crashing 

with Solver, and iii. for propagating crash 

duration and additional cost for crashing 

results) that can also be executed with a (one-

click) single button (see Appendix A).
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Figure 3: Flowchart with the sequential steps for model implementation 

 

4. NUMERICAL EXAMPLE  

 

The model is used for scheduling the 

construction of a residential building project 

taken from Ragsdale (2008: pp. 674). Table 1 

summarizes all required CPM calculations for 

the example project, assuming a finish-to-start 

with no leads or lags precedence relationship 

between work activities. Total project duration 

under normal (most likely) working conditions 

is estimated to 46 weeks.
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Table 1: CPM calculations for expected normal durations (in weeks) 

Activity Description 
Immediate 

Predecessors 

Normal 

Duration 
ES EF LS LF 

Total 

Float 
Critical 

A Excavate  3 0 3 0 3 0 Y 

B Lay foundations A 4 3 7 3 7 0 Y 

C Rough plumbing B 3 7 10 22 25 15 N 

D Frame B 10 7 17 7 17 0 Y 

E Finish exterior D 8 17 25 17 25 0 Y 

F Install HVAC D 4 17 21 21 25 4 N 

G Rough electric D 6 17 23 19 25 2 N 

H Sheetrock C; E; F; G 8 25 33 25 33 0 Y 

I Install cabinets H 5 33 38 33 38 0 Y 

J Paint H 5 33 38 35 40 2 N 

K Final plumbing I 4 38 42 38 42 0 Y 

L Final electric J 2 38 40 40 42 2 N 

M Install flooring K; L 4 42 46 42 46 0 Y 

 

Figure 4 below shows the constructed Gantt 

chart for the project with expected normal 

duration and total slack for each task (in 

weeks). Critical path is A-B-D-E-H-I-K-M.

 

 
Figure 4: Gantt chart for the housing building project for expected normal durations (in weeks) 

 

Figure 5 demonstrates that there is a weak 

linear relationship (no significant correlation) 

between project crash duration Tc (in weeks) 

and additional cost for crashing the project Cc 

(in €), after 1000 iterations.
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Figure 5: Weak correlation between crash duration (Tc) and additional cost for crashing (Cc) 

 

Figure 6 and Table 2 present a frequency 

histogram and descriptive statistics 

respectively, for project crash duration Tc after 

1000 iterations. The mean crash makespan is 

28,83 weeks with a standard deviation of 0,90 

weeks and a coefficient of variation of 3,14%. 

Min value is 26,03 weeks and max value is 

31,77 weeks.

  

 

 
Figure 6: Frequency histogram (1000 iterations) for project crash duration Tc (in weeks) 

 

A 95% confidence interval can be constructed 

for crash project duration, with a lower limit 

of 28,77 weeks and an upper limit of 28,88 

weeks.
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Table 2: Descriptive statistics for project crash duration Tc (in weeks) 

Tc 

Mean 28,83 

Standard Error 0,03 
Median 28,80 
Coefficient of Variation 3,14% 

Standard Deviation 0,90 

Sample Variance 0,82 

Kurtosis -0,0021 
Skewness 0,0117 
Range 5,74 
Minimum 26,03 

Maximum 31,77 

Sum 28826,54 

Count 1000 

 

Figure 7 and Table 3 present a frequency 

histogram and descriptive statistics 

respectively, for the additional cost for 

crashing the project Cc after the same 1000 

iterations. The mean crash cost is €28.181,08 

with a standard deviation of €2.063,23 and a 

coefficient of variation of 7,32%. Min value is 

€20.231,63 and max value is €35.720,06.

  

 

 
Figure 7: Frequency histogram (1000 iterations) for additional cost for project crashing Cc  

(in €) 

 

Again, a 95% confidence interval can be 

constructed for additional cost for crashing the 

project, with a lower limit of €28.053,20 and 

an upper limit of €28.308,96.
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Table 3: Descriptive statistics for additional cost for project crashing Cc (in €) 

Cc 

Mean 28181,08 

Standard Error 65,25 
Median 28238,41 
Coefficient of Variation 7,32% 

Standard Deviation 2063,23 

Sample Variance 4256919,55 

Kurtosis 0,3856 
Skewness -0,0343 
Range 15488,43 
Minimum 20231,63 

Maximum 35720,06 

Sum 28181081 

Count 1000 

 

5. CONCLUSION 

 

In the field of construction project scheduling, 

finding the distribution shape of completion 

time and cost in a PERT/CPM network is still 

an active research area. Determining a 

project’s duration/ direct cost relationship can 

be critical to all construction professionals and 

especially to clients by emphasizing the 

significance of ‘crashing’ the project for 

earliest completion on the maximisation of 

their capital outlay. However, deterministic 

time-cost optimisation models for project 

crashing suffer from the assumption of 

complete information and disregard the 

uncertainty which is endemic in the 

construction production process. As a result, 

the expected normal as well as crash project 

durations and expenses are often 

underestimated in practice.  

 

The research presented herein aims at 

developing an integrated spreadsheet model for 

the practical solution of the stochastic project  

crashing problem in construction planning. 

The introduced mathematical model is based 

on the integration of classic PERT/CPM 

network techniques, probabilistic MCS, and 

LP optimisation. The main contribution of the 

model to the existing project planning literature 

is that it produces frequency histograms and 

relevant statistical information for optimum 

project crash makespan and additional cost for 

project compression, by assuming uncertainty 

and correlation simultaneously for both normal 

and crash durations and direct expenses of 

project activities. The implementation of the 

model is automated in Excel with VBA coding. 

The research is anticipated to assist both 

academics and professionals operating in the 

built environment towards more effective 

decision-making in planning construction 

projects. 
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Appendices 

 

A. VBA codes for the automation of the stochastic project crashing model (see also Appendix B): 
Sub StochCrash() 

' StochCrash Macro 

    Calculate 

    Range("J5:J17").Select 

    Selection.Copy 

    Range("C25:C37").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

    Range("AR5:AS17").Select 

    Application.CutCopyMode = False 

    Selection.Copy 

    Range("M25:N37").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

End Sub 

 

Sub SolverRun() 

' SolverRun Macro 

    SolverReset 

    SolverOk SetCell:="$E$42", MaxMinVal:=2, ValueOf:=0, By Change:="$D$25:$E$37", _ 

        Engine:=2, EngineDesc:="Simplex LP" 

    SolverAdd CellRef:="$D$25:$E$36", Relation:=3, FormulaText:="0" 

    SolverAdd CellRef:="$E$25:$E$37", Relation:=1, FormulaText:="$M$25:$M$37" 

    SolverAdd CellRef:="$J$25:$J$40", Relation:=3, FormulaText:="$K$25:$K$40" 

    SolverOk SetCell:="$E$42", MaxMinVal:=2, ValueOf:=0, ByChange:="$D$25:$E$37", _ 

        Engine:=2, EngineDesc:="Simplex LP" 

    SolverSolve userFinish:=True 

End Sub 

 

Sub Propag() 

' Propag Macro 

    Range("E42:F42").Select 

    Selection.Copy 

    Range("E43:F43").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

    Application.CutCopyMode = False 

    Selection.Copy 

    Range("AA25:AB25").Select 

    Selection.Insert Shift:=xlDown 

End Sub 

 

Sub OneClick() 

    Call StochCrash 

    Call SolverRun 

    Call Propag 

End Sub 
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B. Excel snapshot with the implementation of the developed spreadsheet model for the numerical example: 
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C. Excel formulae used in the numerical example (see also Appendix B): 
G5   =(D5+4*E5+F5)/6       copied to G6:G17 

H5   =SQRT((F5-D5)^2/36)       copied to H6:H17 
I5   =NORMINV(RAND();0;1)      copied to I6:I17 
J5   =G5+H5*I5        copied to J6:J17 

J19  =SUMIF(W5:W17;"Y";J5:J17) 
L19  =SUM(L5:L17) 
N5  =(K5+4*L5+M5)/6       copied to N6:N17 

O5   =SQRT((M5-K5)^2/36)      copied to O6:O17 
P5   =NORMINV(RAND();0;1)      copied to P6:P17 
O19   =RAND()*(O20-N20)+N20 

Q5     =N5+O5*(I5*$O$19+P5*(1-$O$19^2)^1/2)    copied to Q6:Q17 
Q19   =SUM(Q5:Q17) 
R5   {=MAX(IF(ISERR(FIND($B$5:$B$17;C5));0;$S$5:$S$17))}   copied to R6:R17 

S5 =R5+J5        copied to S6:S17 
T5 =IF(U5-J5<0,0001;"0";U5-J5)      copied to T6:T17 
U5 {=MIN(IF(ISERR(FIND(B5;$C$5:$C$17));MAX($S$5:$S$17);$T$5:$T$17))} copied to U6:U17 
V5 =IF(U5-S5<0,0001;"0";U5-S5)      copied to V6:V17 

W5 =IF(U5-S5<0,0001;"Y";"N")      copied to W6:W17 
AA5 =(X5+4*Y5+Z5)/6       copied to AA6:AA17 
AB5 =SQRT((Z5-X5)^2/36)       copied to AB6:AB17 

AC5 =NORMINV(RAND();0;1)      copied to AC6:AC17 
AD5 =AA5+AB5*AC5       copied to AD6:AD17 
AD19 =SUMIF(AQ5:AQ17;"Y";AD5:AD17) 

AH5 =(AE5+4*AF5+AG5)/6      copied to AH6:AH17 
AI5 =SQRT((AG5-AE5)^2/36)      copied to AI6:AI17 
AJ5 =NORMINV(RAND();0;1)      copied to AJ6:AJ17 

AK5 =AH5+AI5*(AC5*$O$19+AJ5*(1-$O$19^2)^(1/2))    copied to AK6:AK17 
AK19 =SUM(AK5:AK17) 
AL5 {=MAX(IF(ISERR(FIND($B$5:$B$17;C5));0;$AM$5:$AM$17))}   copied to AL6:AL17 

AM5 =AL5+AD5        copied to AM6:AM17 
AN5 =IF(AO5-AD5<0,0001;"0";AO5-AD5)     copied to AN6:AN17 
AO5 {=MIN(IF(ISERR(FIND(B5;$C$5:$C$17));MAX($AM$5:$AM$17);$AN$5:$AN$17))} copied to AO6:AO17 
AP5 =IF(AO5-AM5<0,0001;"0";AO5-AM5)     copied to AP6:AP17 

AQ5 =IF(AO5-AM5<0,0001;"Y";"N")      copied to AQ6:AQ17 
AR5 =IF(J5-AD5<0;"-";J5-AD5)      copied to AR6:AR17 
AS5 =IF(AR5<1;(AK5-Q5)*AR5;(AK5-Q5)/AR5)     copied to AS6:AS17 

J25 =VLOOKUP(H25;$B$25:$D$37;3)-VLOOKUP(G25;$B$25:$D$37;3)  copied to J26:J40 
K25 =VLOOKUP(G25;$B$25:$C$37;2)-VLOOKUP(G25;$B$25:$E$37;4)  copied to K26:K40 
E42 =D37+C37-E37 

F42 =SUMPRODUCT(E25:E37;N25:N37) 
E44 =SUMPRODUCT(E25:E37;N25:N37) 
R45 =MIN(AA25:AA1024) 

S45 =MAX(AA25:AA1024) 
T45 =MIN(AB25:AB1024) 
U45 =MAX(AB25:AB1024) 
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D.   Solver parameters used in the numerical example (see also Appendix B): 

 
 


