
European Project Management Journal, Volume 7, Issue 1, December 2017

Corresponding author. Email: petar.bogojevic@gmail.com 58

ISSN 2560-4961(online)
© 2017 YUPMA
www.epmj.org

COMPARATIVE ANALYSIS OF AGILE METHODS
FOR MANAGING SOFTWARE PROJECTS

Petar Bogojević

Saga d.o.o., New Frontier Group, Belgrade, Serbia

Abstract: The purpose of this paper is to review and compare four of the widely used and
referenced agile methods – Spiral model, Dynamic System Development Method, Scrum, and
Extreme programming. These four methods are compared based on their process, roles, current
research, project management, lifecycle coverage and practices. The result of this paper is a
review and comparison of these four models, which shows that neither of the described methods
provides full product life-cycle coverage. XP is concluded to be most specific when it comes to
practical guidelines, but with a very limited scope. Other methods focus more on abstract
principles. Spiral, DSDM and Scrum can be used as frameworks that can use other agile
methods. Organizations should use principals and ideas behind these fours methods as
inspiration whencreating custom tailored development processes. This paper also provides a
review of the current research on these four methods, therefore it can be used as a reference
work for future studies.

Key words: Software developments, Agile methods, Spiral model, Scrum, Extreme
programming, DSDM,Comparison

1. INTRODUCTION

In the last 40 years, the field of software
development has, in its path to become more
productive, evolved in the form of developing
new methodologies.Software development
methods attempted to offer an answer to an
eager business community asking for a faster
and nimbler software development process
(Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003). Since the 2000’s, this
developing path and the way software is being
built has been named “agile”. The Manifesto
for Agile Software Development, written in
2001 by a group of software developers, has
given a new momentum in thislightweight
way of developing. However, the Manifesto is
solely responsible for naming such an
approach. Agile practices were being used by
companies and practitioners since the 70’s
(Larman & Basili, 2003). Ever since the
Manifesto was written, researchers have been
trying to explicate agility and its different

facets. In essence, as evidenced in (Dingsøyr,
Nerur, Balijepally, & Moe, 2012)agile ideas
suggest a “light’ methodology that promotes
maneuverability and speed of response.
(Highsmith & Cockburn, 2001)mention that
agile methods did not bring new practices, but
recognized people as the primary drivers of
project success: “… (agile approach) gives a
new combination of values and principles that
define an agile world view.”

Figure 1 presents an evolutionary path of agile
software development methods and their
relationships. This figure also indicates (using
a dashed line), which approaches influenced
the making of the Manifesto for Agile
Software Development. Figure 1 covers more
than the scope of this paper, however in
combination with work from (Larman &
Basili, 2003), it can demonstrate the entire
evolutionary roadbehind agile software
development methods.

European Project Management Journal, Volume 7, Issue 1, December 2017

59

Figure 1: The evolutionary road of agile methods

(Abrahamsson, Warsta, Siponen, & Ronkainen, 2003)

(Dingsøyr, Nerur, Balijepally, & Moe,
2012)studied the period from the creation of
the Manifesto for Agile Software
Development until 2012, and analyzed papers
and conference proceedings written about
agile software development. Same authors
concluded that ever since 2001 and especially
2005 there has been an increase in journal
articles which is a sign of an increase in
quality as well as quantity.

(Dingsøyr, Nerur, Balijepally, & Moe,
2012)summarize the majority of definitions
from some of the most recognizable papers
written in the last decade, regarding agile
software development. (Abrahamsson, Salo,
Ronkainen, & Warsta, 2002) reviewed the
knowledge base of agile software
development and introduced a definition of
agile development: “Agile software
development is incremental (small software
releases, with rapid cycles), cooperative
(customer and developers working constantly
together with close communication),
straightforward (the method itself is easy to
learn and to modify, well documented) and
adaptive (able to make last moment
changes).” The authors also state that the

development team works by concentrating
only on the functions needed at first hand,
delivering them fast, by collecting feedback
for the work, and by reacting to received
information.Generally speaking, according to
the (Dingsøyr, Nerur, Balijepally, & Moe,
2012) all of the so called agile methods
strived to address the core values of the
Manifesto. The values behind Manifesto’s
four main principles: (1) Distinctive move
towards collaborative development – people-
centric; (2) Adoption of a “lean” mentality,
meaning a need to minimize unnecessary
work, with regards to creating unnecessary
documentation; (3) Customers and
stakeholder are actively involved in the
evolution of software development; (4)
Acceptance of the fact that software
development is an unpredictable and changing
process, are summarized by Dingsøyr, et al..

This paper is composed as follows. The
subsequent section reviews four agile
methods. Following is the comparison of
these four methods. The final section provides
a conclusion and a brief description of future
work.

P. Bogojević

60

2. AGILE METHODS REVIEW

Having the right method in place that is well
designed and appropriate to the nature of the
project and is also well integrated with the
customer for the project so that the customer
is fully engaged collaboratively in the process
is one of key factors of successful project
management as evidenced by(Cobb, 2015).

From the examination of the relevant
literature on software development, and
particularly Figure 1 and the work of (Larman
& Basili, 2003),it can be concluded that some
methods had, and continue to have influence
on the way software is being produced today.
On this idea, and with reference to systematic
reviews on agile software
development,(Abrahamsson, Salo, Ronkainen,
& Warsta, 2002; Dyba & Dingsoyr, 2008),a
list of four most influenced agile methods was
selected for this paper. These are:

� Spiral model
� Dynamic System Development

Method
� Scrum
� Extreme programming

The methods are then described based on the
model found in (Abrahamsson, Salo,
Ronkainen, & Warsta, 2002) and renewed
with state of the art literature. Every method is
illustrated through the following structure: (1)
process – description of phases in the product
life cycle; (2) Roles and responsibilities –
specific roles used in the model; and (3)
Current research– overview of the scientific
and practical status of the method.

The goals of this research paperare to:
(1)describe the principles and mechanisms of
the above software development methods; (2)
describe the relevant use case experience from
various case studies and reviews; and (3)
compare these four methods.

2.1. The Spiral model

The Spiral model was introduced in 1986 in a
work by Barry Boehm titled“A Spiral Model
of Software Development and
Enhancement”(Boehm B. W., 1986). One of

the best ideas, which came out of the Spiral
model, was that development teams should
choose a software development process,
which defined: the frequency of the
increments, the development tool, the details
of the plan, and the risk analysis based on
different parts or components of the product.
This process presented a next step in the
evolution of the software development models
of the time and was different from the others
since these used the above processes in regard
to the final product, as a whole.

2.1.1. Process

The Spiral model was used in the definition
and development of the Thompson Ramo
Wooldridge Software Productivity System
(TRW-SPS). The goal of this project was to
define an engineering environment which
would significantly increase TRW’s software
productivity.

Product development process is performed in
spirals or rounds. The Spiral model may
appear a bit complex at first, especially if you
look at the Spiral model graph (Figure 2), but
once you understand the logic behind it, the
model becomes much more understandable.
Actually, in particular situations the spiral
model becomes equivalent to one of the
existing process models, for example
Waterfall. In other situations, it represents a
mix of approaches. Again, the selection of a
particular process depends on the risks
associated with specific parts of the project.

The spiral approach is very much risk-driven
and puts risk identification as its primary
starting point. The emphasis is on identifying
all types of objectives and constraints during
each round of the spiral. By doing so, the
Spiral model incorporates software quality
objectives into software development. Barry’s
work suggests using the spiral approach on
hardware projects as well. The Spiral model
suggests using prototypes, as a risk reduction
option, at any development stage. Plans and
specifications should be created in such detail
that the lack of it does not jeopardize the
project.

European Project Management Journal, Volume 7, Issue 1, December 2017

61

Figure 2: Spiral model of the software process (Boehm B. W., 1986)

2.1.2. Roles and responsibilities

Different from other methods described in this
paper, the Spiral method does not define any
particular roles. However, it can be inferred
from the Spiral process that some roles and
responsibilities are necessary for it to work.
Besides from the usual roles involved in every
software project, such as developers,
management and customer representative or
business analyst, the main genuine role which
appears in the Spiral model is the role of a risk
analysis expert.

Risk analysis experts represent a key role in
the Spiral model. The Spiral model requires a
risk analysis to be performed in every stage of
the project. It is also one of the most
important parts of this model, since the goal is
to pick an alternative based on its risks and
risk resolutions. From this, it can be
concluded that a person performing the role of
a risk analysis expert, must be very familiar
with the technology in question,
organizational culture, its processes and
various alternatives to achieve the goal of the
project.

2.1.3. Current research

(Hendrix & Schneider, 2002)present how
Boehm’s Spiral model was used in NASA’s

TReKproject. The purpose of this project was
to create a PC based ground system which
would enable scientist to monitor and control
experiments located onboard the International
Space Station. It was important for the TReK
project to address all the fundamental issues
associated with a software development
project, including documentation,
configuration management, testing, and other
quality assurance activities. Like most other
software projects, this project faced many
challenges such as the need for early product
availability for customers, limited personnel
resources, a tight schedule, and dependencies
on external systems, many of which were to
be developed in parallel with TReK by
different development teams.

The TReKsoftware lifecycle used the Spiral
model in such a way that it was possible to
combine both project management and
software development. Hendrix et al. claim
that most of the challenges faced on the TReK
project were overcome with support of the
Spiral project lifecycle.

Three main disadvantages of the Spiral
modelare: (1) it is highly dependable on risk
analysis, and risk-assessment experts – the
Spiral model suggest that software developers

P. Bogojević

62

do the risk analysis, which may prove
troublesome in situations where these
resources are working on multiple projects or
when there is a lack of senior developers to
review these risk documents; (2) it is not
appropriately adjusted to work on contract
software projects – theSpiral model was
created and suited to fit the TRW’s internal
development processes; (3) it needs further
elaboration and defining in areas such as
contracting, specifications, milestones,
reviews, scheduling, status monitoring, and
risk area identification to be fully useable in
all situations, as stated by (Boehm B. W.,
1986).

In his later works, (Boehm &Belz,
1989;Boehm & Turner, 2015), Boehmet al.
elaborated his use of the Spiral model as a
process model generator. As described: “A
process model generator is a technique which
operates on a project’s process drivers as
inputs to produce a process model for the
project which is tailored to its particular
process drivers.” In theory, the Spiral could be
used to define various key project factors, and
based on these factors the spiral will
“transform” to an another development
method, such as waterfall, for example. More
practical studies and use cases are missing in
order to provide a more detailed review.

Wider implementation of the Spiral model
may still not be possible due to current
perceiving on risk management. (Dragan,
Marija, & Zorica, 2013)analyzed how risk
management influences project performance
and presented mixed results. Dragan et al.
state that “Most software developers and
project managers perceive risk management
processes and activities as extra work and
expense.” Also, they indicate that companies
did not benefit greatly due to risk
management techniques. However, authors
also mention that assigning a role of risk
manager increases the chance of project
success. Dragan et al. reviewed the results of
risk management studies and stated that risk
management efforts were small in small
projects ($0.1 million – $1 million) and
progressed as projects became bigger. This

finding can be seen as relative since small
companies may find $1 million projects as
key enterprise projects and invest a great deal
of risk control in them. The results in this
study can be remarked as an additional
dilemma, when implementing a risk driven
approach, such as Spiral.

2.2. Dynamic software development

method (DSDM)

DSDM is a method developed by a dedicated
consortium in the UK. The first release of this
method was in 1994. The fundamental idea
behind DSDM is that instead of fixing the
amount of functionality to be delivered and
then adjust time and resources needed to reach
this functionality, it is preferred to fix time
and resources and then adjust the amount of
functionality accordingly, stated in
(Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003). Most of what is written in
papers and studies about DSDM comes from
(Jennifer & Peter, 1997), and handbooks,
(DSDM Consortium, 2014) and (DSDM
Consortium, 2008), from the DSDM
consortium, which promotes DSDM. Some
authors mark DSDM as the first truly agile
software development method (Abrahamsson,
Warsta, Siponen, & Ronkainen, 2003).

2.2.1. Process

DSDM consists of five phases: (1) feasibility
study, (2) business study, (3) functional model
iteration, (4) design and build iteration, and
(5) implementation asdefined by
(Abrahamsson, Salo, Ronkainen, & Warsta,
2002). These five phases are presented in
figure 3. First two phases are sequential, and
done only once. Development work is done in
the last three phases, which are iterative and
incremental. DSDM approaches iteration
through timeboxes. The time allowed for each
iteration, including planned results,is planned
through timeboxes in advance. A typical
timeboxlength is from a few days to a few
weeks. In the following section, DSDM’s
phases are described according to
Abrahamsson, et al.

European Project Management Journal, Volume 7, Issue 1, December 2017

63

Figure 3: DSDM Process Diagram (Jennifer & Peter, 1997)

In the feasibility study phase, the suitability of
applying DSDM, for the given project, is
assessed. The feasibility is conducted based
on the type of the project and organizational
and people issues. In addition, technical
possibilities and project risks are analyzed.
The results of the feasibility study phase are a
feasibility report and an outline plan for
development. Optionally, if the team is not
familiar enough with the project’s business or
technology, a fast prototype can also be made.
Based on this prototype, the team can make a
decision whether to proceed to the next phase
or not. Average duration of the feasibility
study phase is not expected to take more than
a few weeks.

The business study phase is where the
essential characteristics of the business and
technology are analyzed. DSDM recommends
teams to organize workshops,during which a
sufficient number of the customer’s experts
are gathered. This way,the project team can
consider all relevant factors of the system and
agree on development priorities.The agreed
upon business processes and user cases are
described in a business area definition. The
identification of user cases helps in involving
the customer, as key people in the customer’s
organization areidentified and involved at an
early stage. In the business study phase, high
level descriptions of the processes are
presented, in a suitable format (diagrams,
business object models, etc.). The result of the
business study phase is a system architecture
definition, which sets the first system

architecture sketch, and is allowed to change
during the project. Also an outline prototyping
plan is formed, which states the prototyping
strategy for the following stages.

The functional model iteration phase
introduces an incremental and iterative
approach. In every iteration, the content and
the approach is planned. The results are
analyzed for further iterations. Both analysis
and coding are done: prototypes are built and
the experiences gained are used in improving
the analysis model. There are four main
outputs in this phase: (1) prioritized functions
– a prioritized list of functions that are
delivered at the end of the iteration, (2)
functional prototyping review document –
collection of user’s comments about the
current increment, (3) non-functional
requirements – listed as part of the scope for
the next phase, and (4) risk analysis of further
development – document that analysis
encountered problems.

The design and build iteration is the main
building phase. The output of the design and
build phase is a tested system that fulfils at
least the minimum agreed set of requirements.
The design and build results are reviewed by
the user in every iteration.

The implementation phase is where the
finished system is shifted from the
development environment to the actual
production environment. In this phase the
system is given to the users, which is also

P. Bogojević

64

being trained to use it. User manuals and
project review reports are created and given to
the user. DSDM defines four possible courses
of further development. If the system achieves
all requirements, no further work, or
remodeling is needed. However, if a
substantial amount of requirements has to be
revised (for example, if they were not
discovered until the system was in
development), the process may be run through
again from start to finish. If a less critical
functionality has to be added, the process can
be re-run from the functional model iteration
phase.

2.2.2. Roles and responsibilities

The following roles as most significant in
DSDM, as described by (Abrahamsson, Salo,
Ronkainen, & Warsta, 2002):

Developers and senior developers cover all
developer roles. Seniority is based on
experience. The level of leadership in the
team is based on the amount of seniority a
developer has. The developer and senior
developer roles cover all development tasks,
such as analysis, design, programming and
testing.

The technical coordinator role takes the task
of defining the system architecture and is
responsible for technical quality in the project.
A technical coordinator is also responsible for
technical project control.

The role of ambassador userrepresents duties
that are to bring the knowledge of the user
community into the project. This role is
responsible forreporting the progress of the
project to other users important for the
customer and the project. By doing so, the
ambassador user ensures that an adequate
amount of user feedback is received. The
ambassador user has to be a member of the
user community that will use the system once
it is completed. Since the ambassador user is
unlikely to represent both the technical and
the businessuser viewpoints, an additional role
of advisor user is recommended. Adviser
users are users who represent an important
perspective from the point of view of the
project. Adviser users are representatives of
IT staff, or financial auditors.

A visionaryis a user participant with the most
accurate perception of the business objectives
of the system and the project. The Visionary
is probably also the person with the initial
idea to build the system and start the project.
Two main tasks of the visionary are to ensure
that essential requirements are found early on,
and that the project keeps going in the right
direction from the viewpoint of those
requirements.

An executive sponsoris the person from the
user organization who has the related financial
authority and responsibility. The executive
sponsor has the ultimate power in decision
making.

2.2.3. Current research

DSDM was originally developed and
continues to be maintained and researched by
a consortium of several companies.(Tudor &
Walter, 2006)describe how a large, process
oriented, software organization coped the
challenge of synchronizing agile with ISO
9001 certification through use of
DSDM.Authors statedthat visual
representation of a timeboxed plan helped
team members know, at any time, what they
were expected to complete. Also, developers
pointed frequent meetings, small team size,
and user involvement as helpful. The visual
timebox sheets are one example of aaccepted
practicein managing schedules. However, not
all teams have been successful in shifting
from traditional approaches to DSDM.

A case study of a partial DSDM adoption in a
large organization is given by (Cobb, 2015).
Another key feature of this project was the
fact that the customer was the government,
specifically, UK’s Ministry of Defense. The
project’s objective was to create a
sophisticated radar system which shows the
position of the friendly forces in the cockpit of
an aircraft. The key lesson learned on this
project was to tailor the agile delivery
technique in the project planning phase.

(Craddock, Richards, Tudor, Roberts, &
Godwin, 2012) described a version of a
DSDM which has been tailored specifically to
complement Scrum. In this model, Craddock,
et al. suggest using DSDM for project
management and Scrum for product

European Project Management Journal, Volume 7, Issue 1, December 2017

65

development. The DSDM consortium also
provides white papers, which describe DSMD
usage with the Prince2 methodology.

(Bjelica, Mihić, & Toljaga-Nikolić,
2015)reviewed the success factors of IT
projects and presented that in larger
companies, only 9% of the projects are done
on time and within the budget.Since DSDM’s
key principles are fixed time and cost, with
changes allowed in the functionalities build,
DSDM may prove helpful in finishing
projects on time and cost. Furthermore, full
implementation of the DSDM is more likely
to be applied in big organizations, and on big
projects. This is due to the fact that small
companies cannot dedicate all the roles stated
by the DSDM. However, partly implementing
DSDM, for example, using the Moscow
technique, iterative planning and including
ambassador user and technical coordinator
roles may help small companies finish on time
and budget.

2.3. Scrum

The term “Scrum,” representing a group of
rugby players packing closely together trying
to gain possession of the ball, first appeared in
a study of two Japanese professors (Takeuchi
& Nonaka, 1986). Takeuchi and Nonaka
introduced a holistic approach, based on lean
principles, which represented best practices in
the Japanese industry. The Scrum model was

then enhanced during the “Pasterur Project,”
which examined 50 highly effective software
development organizations, at ATT Bell Labs
(Sutherland & Schwaber, 2007).

The Scrum framework is very clearly defined
in the Scrum guide by Ken Schwaber and Jeff
Sutherland. The goal of Scrum is to deliver as
much quality software as possible within a
series of short time boxes called “sprints,”
which last about a month. Scrum is
characterized by short, intensive, daily
meetings of software development
stakeholders. Scrum project planning uses
lightweight techniques such as Burndown
charts as opposed to Gantt charts and relies on
self-organizing and cross-functional teams.

2.3.1. Process

Different authors describe various Scrum
processes, which are very similar. The
following review of a Scrum process is based
on the 2016 Scrum guide. Scrum is conducted
iteratively and products are developed
incrementally, through time-boxed events
named sprints, figure 4.Sprint’s maximum
duration is fixed to one month and its purpose
is to provide a customer with a working piece
of software which is releasable. A sprint
consists of: (1) sprint planning meeting, (2)
daily scrum, (3) sprint review, and (4) sprint
retrospective.

Figure 4: Scrum framework as presented in The Scrum Guide 2016

P. Bogojević

66

A sprint starts with a sprint planning meeting.
In this meeting, the development team meets
and creates a sprint backlog, from the items in
the product backlog, which defines the scope
of the work for the sprint. After the
development team agrees on what needs to be
done, they define the way they will do the
required work.

The daily scrum is an everyday, fifteen
minute, meeting in which the developers
discuss what was done the day before, did
they have any problems, and what will they
work on next. The purpose of this meeting is
to keep all the member informed on the work
done, and work to be done in the sprint.

A sprint review meeting occurs at the end of
each sprint. At this meeting, the entire scrum
team meets together with the customer
representative and demonstrates the
functionalities they worked on during the
sprint. Sprint review is the perfect time for the
scrum team to gather the customer feedback
and incorporate it into the subsequent sprint.

Finally, the sprint retrospective is the last
meeting before the next sprint starts. This
meeting is intended for the scrum team only
and its goal is to make further enhancements
in the scrum process. The team discusses
various ways they can be more productive and
effective. The Scrum master has a key role in
this meeting, since he is accountable for the
Scrum process.

2.3.2. Roles and responsibilities

Scrum roles and responsibilities have changed
over time. The Scrum team is formed from
three roles, as stated in the 2016 issue of the
Scrum guide. These are:

Scrum master is responsible for ensuring
Scrum is understood and enacted. Scrum
masters do this by ensuring that the Scrum
team adheres to Scrum theory, practices, and
rules. The Scrum master also helps other,
outside of the Scrum team interact with Scrum
team. This coaching roles servers the project
mainly by removing impediments to the
development team’s progress. Scrum masters
can, but usually do not do any of the
programming work.

The product owner is responsible for
maximizing the value of the product and the
work of the development team. One of the
main responsibilities of a product owner is to
manage the Product backlog (list of items
which represent features, functions,
requirements, enhancements, and fixes that
make a product.) This means the product
owner is accountable for ordering the items in
the product backlog, making priorities, and
ensuring the development team understands
the items.

The development team consists of
professionals who do the work of delivering a
potentially releasable increment of the product
at the end of each Sprint. One of the main
features of a Scrum’s development team is its
cross functionality and self-organization. This
means the development team has all the skills
needed to develop the product and is
empowered to choose the way they do so. The
optimal development team size is three to nine
members.

2.3.3. Current research

According to 10th State of Agile Report,
Scrum, nearly 70% of respondents are using
Scrum – Scrum (58%) and Scrum/XP hybrid
(10%), making Scrum the most used agile
approach.Regarding Scrum practices, (Mann
& Maurer, 2005) found that daily meetings
kept the customer up to date and that planning
meetings helped in clarifying the development
scope. Customers were more appealing to the
development process as well. The customers
stated that their satisfaction with the project
that was based on Scrum was greater than
with previous projects at the company.
However, Mann and Maurer stress that the
customer should be trained in the Scrum
process so that they will understand the new
expectations that the developers will have of
them. It is also stated that the introduction of
Scrum led to a reduction of overtime, and all
developers recommended the use of Scrum in
future projects. The study also showed that
there is some time required for everyone
involved to get used to the process. This
resulted in longer sprints and unclear meeting
agendas.

European Project Management Journal, Volume 7, Issue 1, December 2017

67

Also, Unlike XP, Scrum does not define any
technical practices that can be call “best”,
however it does present a good project
management framework. According to the
(Akif & Majeed, 2012) there are some
limitations to the Scrum framework, mention
training, management, involvement, access to
external resources, corporate or organizational
size, sub contraction, developing large and
complex systems as key research areas where
no significant research has been done.

In the 2016 Scrum Guide, by Ken Schwaber
and Jeff Sutherland, it is stated that: “Scrum’s
roles, artifacts, events, and rules are
immutable and although implementing only
parts of Scrum is possible, the result is not
Scrum.” It is against the definition of agile
itself that you cannot change or adapt Scrum
rules. This lack of flexibility in Scrum can
become an obstacle to an organization shifting
to Scrum. Adopting Ken’s and Jeff’s Scrum
may lead to specific changes in the current
organizational titles and roles. For example,
the Project manager role is not defined in
Scrum. Therefore, companies adopting agility
for the first time should consider changing in
small steps at first. For example, switching
just one senior team to Scrum, and then pass

on this experiences with the entire software
development department.

2.4. Extreme Programming (XP)

Extreme programming originates from the
Chrysler C3 Project in 1996. From then, XP
was featured in a majority of agile studies
(76%) as analyzed by (Dyba & Dingsoyr,
2008). XP has evolved from the problems
caused by the long development cycles of
traditional development models as evidenced
by(Beck, 1999). XP model’s main
characteristics are short iterations with small
releases and rapid feedback, close user
participations, constant communication and
coordination and collective code ownership. It
consists of 10-12 practices, depending on the
source, such as the planning game, pair
programming, on-site customer, test-first
programming, etc. The main body of
knowledge for XP comes from (Beck, 1999).

2.4.1. Process

In the following figure, XP’s phases are
introduced according to (Beck, 1999). The life
cycle of XP consists of six phases, figure 5:
exploration, planning, iterations to release,
productionizing, maintenance, and death.

Figure 5: The life cycle of XP (Beck, 1999)

In the exploration phase, customers
familiarize the development team with the

product idea and write story cards to be
included in the first releases. At the same time

P. Bogojević

68

the project team gets acquainted to the
technology, tools and practices they will be
using in the project. A prototype of the system
is built. The exploration takes between a few
weeks to a few months, depending on the
familiarity of the technology used.

The planning phase sets the priority for the
stories, the programmers estimate how much
effort each story requires and determine the
scheduled. Scheduling of the first release does
not normally exceed two months. The
planning phase lasts for a couple of days.

During the iterations to release phase, the
schedule, set in the planning phase is broken
down to a number of iterations that will each
take one to four weeks to implement. During
the first iteration, a system with the
architecture of the whole system is created. At
the end of the last iteration the system is ready
for testing or production.

The productionizing phase consists of extra
tests and checks of the performance of the
system. At this phase, new changes may
appear and the decision has to be made
whether to includethem in the current
release.The postponed ideas and suggestions
are documented and can be implemented later
during the maintenance phase, or some other
project.

Throughout the maintenance phase, the XP
team keeps the system in production and
produce new iterations. This phase also
requires specific customer support tasks. The
maintenance phase may require incorporating
new people to be introduced into the team.

The death phase is near when the customer
does no longer have any new stories, requests
or changes to be implemented. This requires
that the system satisfies all of the customer’s
requests. This is the time when the necessary
documentation of the system is written,since
there are no more changes to the architecture,
design or code. Death phase of a project may
also occur if the system is not delivering the
required or desired outcomes. In addition, the
project will end if the system becomes too
expensive for further development or
maintenance.

2.4.2. Roles and responsibilities

The following roles and responsibilities are
presented as described in (Abrahamsson, Salo,
Ronkainen, & Warsta, 2002).

Programmers program the entire system, write
tests and keep the program code as simple as
possible. The first challenge inmanaging the
team and making XP successful is
communicating and coordinatingefficiently
with other programmers and among team
members.

The customer role writes the stories and
functional tests, and decides when each
requirement is satisfied. The customer is also
responsible for setting the implementation
priority for the requirements and giving
feedback to the programmers.

Tester’sprimary activity is to write tests cases,
together with the customer. Testers run
functional tests, broadcast test results and
maintain testing tools.

Tracker gives feedback about everyday work
on a project. He traces time estimates made by
the team and provides feedback on how
accurate they are. The main idea behind this is
to improve future estimations. Trackers
inspect the progress of each iteration and
evaluate whether the iteration goal is
reachable. Trackers must do this with respect
to the given resource and time constraints.
They also alarm the team if any changes are
needed to the process.

Coach is the person, who is well acquainted
with XP and is responsible for the process as a
whole. A sound understanding of XP
practices, and experience in working with XP
teams is important for this role. This enables
the coach to guide the other team members in
following the process.

Consultant is an external member to the team.
His primary role is to advise the team with his
technical knowledge. Consultant guides the
XP team in solving their specific technical
issues.

Manager role makes the decisions regarding
the project.He communicates with the project
team in order to understand the status of the
project, its situation, and to distinguish any
difficulties or deficiencies in the process.

European Project Management Journal, Volume 7, Issue 1, December 2017

69

2.4.3. Current research

Organizations shifting from waterfall to XP
can quickly adopt its practices and achieve
good results – 10% time reduction and 25%
cost reduction,calculated by (Dyba &
Dingsoyr, 2008). Dybaet al. also concludes
that: (1) XP teams experienced improved
communications, but were perceived by other
teams as more isolated; (2)XP works best with
experienced developers with domain and tool
knowledge; and (3)XP leads to an increased
collective code understanding and overall tacit
knowledge improvements. A research,
(Robinson H. , 2005), examining human,
social and organizational factors related to
agile development in three companies: a large
multinational bank, medium-sized content
security software company, and a small start-
up company found that, despite the variations
in physical settings and organizational
structure, XP worked well in all three
companies. Authors (Robinson & Sharp,
2001) identified good personality
characteristics for members of XP
development teams, stating trust as a key
factor. Favorable team member traitis also:
“analytical, with good interpersonal skills and
a passion for extending his knowledge base
(and passing this on to others)” as found by
(Young, Edwards, Mcdonald, & Thompson,
2005).(Dyba & Dingsoyr, 2008)surveyed job
satisfaction amongst employees in software
companies that used XP and companies that
did not use agile development methods. 95%
of the employees who used XP answer that
they would like their company to continue
using their current development process,
while the number for the employees in
companies that did not use agile development
was 40%.

As far as XP practices are concerned,
numerous studies were conducted on this
topic. A case study showed that participants
had a divided opinion on pair programming,
and that test first programming had good
effects.A study done by (Ileva, Ivanov, &
Stefanova, 2004) also showed mixed opinions
on pair programming; It proved to be a very
useful style of working with full respect to
coding standards. However, working 40h a
week in pairs required a lot of concentration
which exhausted the developers. A studyby
(Dyba & Dingsoyr, 2008) showed that 73% of

the employees who used pair programming
claimed that this practice speeds up the
software development process. Also,the
planning game was found to have a positive
effect on collaboration within the company.
The planning game process bridges the usual
boundaries between project managers and
software developers, as found by (Mackenzie
& Monk, 2004).According to (Dyba &
Dingsoyr, 2008), having a customer on site
was suggested useful and had resulted in
better collaboration with the customer.This
practice benefited the customer side as well,
since the customer had constant control over
the process(Ileva, Ivanov, & Stefanova,
2004). XP practices result in stressful
situations and long working hours in regards
to the customer, as studied by (Martin , Biddle
, & Noble, 2004). Martin et al. point that XP
Customer practices achieve excellent results,
but that they are also unsustainable, especially
in long or high pressure projects. Martin et al.
also studied the role of the customer in
outsourced projects, and found that this was
challenging because the customer was
required to become acclimatized to the
different cultures or organizations of the
developers.

3. COMPARISON

Chronologically speaking, the Spiral model is
the oldest method in the review, appearing in
1986, followed by Scrum and DSDM in the
early nineties, and finally XP appeared in
1998. Based on the literature, all of the
methods can be proclaimed as “active,” since
they are still used today, in both research and
practice. Numerous systematic reviews of
agile methods show that scrum and XP are
leading as being the most used and cited
methods, DSDM and Spiral have a far less
presence in both organizations and studies. In
the last decade, The Spiral model has been
mostly used as a reference model when
creating other models or choosing the
appropriate one. Scrum and Spiral have one
similarity, the featurethat they can be used as
a process framework in which other practices
can be used. This is also true for DSDM,
however more case studies are needed for a
stronger conclusion. For example, the
developing team can use XP practices in their
development. Table 1 summarizes the review
of agile methods in section 2.

P. Bogojević

70

Table 1: Comparison of different agile methods
 Process Roles and responsibilities Current research

Spiral

Risk oriented process which
can be transformed into other
development processes
depending on project
characteristics.

Heavily dependent on
experienced risk experts.
Other than this, no roles are
defined, hence it is hard to
define a team required for the
spiral process.

Currently Spiral is
being researched as a
process generating
model. Not many
applications of the
Spiral can be found.

DSDM

An iterative and incremental
approach that is more suited
for large-scale projects, in
which deadlines and costs are
fixed and functions can be
adjusted accordingly.

Defines roles on a project
level, development team
level and customer support
level. All roles are well
defined, but may not all be
available in all environments,
which can be a problem for
practitioners.

DSDM’s framework
can enclose other
methods, such as
Scrum or Prince2.

Scrum

A lightweight iterative process
which puts the focus on
developing and project
management, removing any
obstacles the developing team
may have, and having a
potentially releasable
increment, approved by the
customer, in every iteration.

A self-organized and cross-
functional team which has
the power to do the work the
way they find appropriate.
The Scum process is ideal
for organizations with small
number of hierarchical
levels.

Mostly used method
in software
development today.
Along with XP it is
also one of the most
researched method.

Extreme
programming

A developer oriented process
which places the needs of
software developers in the first
place.

XP defines all roles required
in a development team. It can
be a good reference point for
startups and newly created
development teams.

At the moment, there
are mixed opinions
on the effects of the
XP. It is suggested
that it should be used
with experienced
teams.

DSDM introduces several user roles, business
advisor, which represent different customer
viewpoints, whereas XP defines only one role
for user and Scrum recommends that “key
stakeholders” be present at sprint reviews. It
can be concluded that these three methods
recognized the need for a user role to be
involved in the development process. The
Spiral model has no mention of a user or
customer role in its original work. Regarding
team size, XP and Scrum recommend using
small teams, preferably less than 10
developers. DSDM and Spiral on the other
hand, have examples of being used in large
projects, however teams were again not bigger
than 20 developers. Spiral and XP empower
their teams to make decisions on their own.
Thus, adopting one of these methods requires
a cultural change in the organization. (Nerur,
Mahapatra, & Mangalaraj, 2005) discuss the
organizational factors affected in adopting
agile development.. The 10th State of Agile
Report also shows 10 leading causes of failed
agile projects and barriers to further agile

adoption. Not all agile methods are suitable
for all phases of the software development life
cycle, as elaborated by (Abrahamsson, Salo,
Ronkainen, & Warsta, 2002; Abrahamsson,
Warsta, Siponen, & Ronkainen, 2003). Figure
6based on the model described by
Abrahamsson et al. shows which phases of
software development are supported by
different agile methods:“Each method is
divided into three blocks. The first block
indicates whether a method is suitable for
project management. The second block
identifies whether a process, which the
method suggests to be used, is described
within the method. The third block indicates
whether the method describes any concrete
guidance, activities and work products that
could be followed and used under varying
circumstances. A grey color, in a block,
indicates that the method provides and white
color indicates that the method does not
provides detailed information about one of the
three areas evaluated”.

European Project Management Journal, Volume 7, Issue 1, December 2017

71

Figure 6: Comparing life cycle, project management and concrete guidance (Abrahamsson,
Salo, Ronkainen, & Warsta, 2002; Abrahamsson, Warsta, Siponen, & Ronkainen, 2003)

Concerning project management, XP does not
provide any guidance. However,
(Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003)provide examples of XP
project management literature. Unlike XP,
Scrum covers project management and it is
focused on managing agile software
development projects. Since Scrum does not
give explicit practical examples of how to
develop software, the same authors give an
example of how Scrum is combined with XP.
DSDM provides a framework which supports
rapid application development and
development teams work facilitation in an
ever-changing environment. The Spiral model
does not have any project management
practices described. One of the reasons for
this is due to fact that the Spiral model has the
smallest body of knowledge.

The DSDM provides a full coverage over the
development life-cycle. Neither XP nor Scrum
cover project inception phase or provide any
detail on how to accept the product and deal
with it once it is in use. Scrum also does not
give any information regarding the
development phase. The Scrum guide does
not explicitly mention integration or
maintenance phase, but it does state that a

software project lasts until the product
backlog – “As long as a product exists, its
Product Backlog also exists.” This is why
(Abrahamsson, Salo, Ronkainen, & Warsta,
2002) suggest somemethods require a
complementing approach to support software
development.

Concrete guidance, in the context of figure 6,
refers to practices or activities that provide a
specific guidance on how a specific task can
be executed.XP’s main focus is on software
development practices. Its purpose and goal is
to share best software development practices”.
These practices are described in detail in
(Beck, 1999). However, it is out of the scope
of this paper whether these practices have any
value. (Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003), and (Recker, Holten,
Hummel, & Rosenkranz, 2017) provide a
more detailed analysis on this question.The
DSDM method states that due to the fact that
each organization is different it cannot define
practices that would fit all of them as
described in (Abrahamsson, Warsta, Siponen,
& Ronkainen, 2003). Instead organization
should develop practices themselves. DSDM
does not provide any guidance on this,
however it does give examples of DSDM used

P. Bogojević

72

in various organizations through white papers
available on the community website. One
technique that DSDM proposes is the Moscow
technique for requirements prioritization
(DSDM Consortium, 2008; Cobb, 2015).
(Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003) state that Scrum as well
provides concrete practices for the
requirements specification phase and
integration testing phase. The Spiral model
provides a template table which can be used in
the project initiation phase as well as when
entering any later phase. This table is
described in more detail in (Boehm B. W.,
1986).

(Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003) conclude that the agile
community, literature, and developers are
being driven more by abstract principles than
by concrete guidance and practices – “The
agile community is more concerned about
getting acceptance to proposed values than in
offering guidance on how to use the operative
versions of these values.” The more detailed
and practice oriented methods, such as XP,
are very limited in their scope. More work is
needed in determining how the described
methods can be used in different organizations
and situations, so that practitioners have a
solid knowledge base on which to make
decisions.

In summary, all of the reviewed agile methods
are placing an emphasis on the following
aspects: (1) delivering something useful, (2)
reliance on people, (3) encouraging
collaboration, (4) promoting technical
excellence, (5) being constantly adaptable
(Abrahamsson, Salo, Ronkainen, & Warsta,
2002). In this paper another aspect is
mentioned – doing the simplest thing possible,
more appropriate meaning would be doing the
most important thing possible, since all of the
methods perform prioritizations.

4. CONCLUSION

It can be noted that all software development
models described in this paper, were created,
developed, and tested in a particular
organization. For example, the Spiral model
was implemented in TRW, the Scrum in Bell
Labs, Extreme Programming in Chrysler. The
important word here is developed and tested:
it is through trial and error, and with respect to

the organizational environment, technology,
resources, and to specific project/s, at that
time, that these models incurred. Therefore, it
would be a common mistake to simply copy
an already given process methodology and
apply it to a particular organization. This may
work, but the chances of it being effective and
productive are slim. It is much more
productive to study these models and use the
principles and values they promote as
inspiration for a custom organizational
software development method. This goes in
accordance with all the models and
methodologies created by big international IT
companies (Microsoft’s Sure Step, Oracle’s
OUM, IBM’s Fastlane, etc.) and with the 10th
State of Agile Report which states that 30% of
the surveyed companies use a mixture of agile
models.It is important that people involved in
defining the organizational PM procedure get
acquainted with these process
methodologies.One of the best lessons project
managers, or team leaders on software
projects can learn from the agile movement, is
that they have to find a way to use whatever
resources as well as processes, which are
available at the moment. This knowledge is
also vital since in the last two decades, the
debate about agile methods has been very
significant and researchers and practitioners
are not aware of existing approaches or their
suitability for varying real-life software
development situations as evidenced by
(Abrahamsson, Warsta, Siponen, &
Ronkainen, 2003).

Future work should be in the field of hybrid
models which combine agile and traditional
development practices with project
management approaches. (Abrahamsson,
Salo, Ronkainen, & Warsta, 2002) mention
different authors which share the opinion that
no single development approach can conform
to the whole spectrum of different projects.
Boehm, the author of the hybrid Spiral model,
recognizes in his work (Boehm B, 2002) that:
“each approach has a home ground of project
characteristics within which it performs very
well, and much better than the other, outside
each approach’s home ground, a combined
approach is feasible and preferable.”

Future work should also be in the field of
creating methods and models, which will help
organizations analyze the characteristics of

European Project Management Journal, Volume 7, Issue 1, December 2017

73

the project and the project environment and as
a result propose a method for the particular
project. Examples of this new research can be
found in Boehm’s new works regarding the
Spiral model, (Boehm &Belz, 1989; Boehm &
Turner, 2015).

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., &

Warsta, J. (2002). Agile Software
Development Methods: Review and
Analysis. Oulu: VTT Elektroniikka.

Abrahamsson, P., Warsta, J., Siponen, M. T.,
& Ronkainen, J. (2003). New Directions
on Agile Methods: A Comparative
Analysis. Proceedings of the 25th
International Conference on Software
Engineering (str. 244-254). Portland:
IEEE Computer Society Washington.

Akif, R., & Majeed, H. (2012). Issues and
Challenges in Scrum Implementation.
International Journal of Scientific &
Engineering Research, Volume 3, Issue
8, 1359-1362 .

Beck, K. (1999). Extreme Programming
Explained: Embrace Change . Boston:
Addison-Wesley Longman Publishing
Co.

Bjelica, D., Mihić, M., & Toljaga-Nikolić, D.
(2015). Theoretical perspective of IT
project management approaches, success
factors and maturity models. Serbian
Project Management Journal, 43-55.

Boehm, B. (2002). Get Ready for Agile
Methods, with Care. IEEE Computer
Journal, 64-69 .

Boehm, B. W. (1986). A Spiral Model of
Software Development and
Enhancement. ACM SIGSOFT Software
Engineering Notes, 14-24.

Boehm, B., & Belz, F. (1989). Experiences
with the spiral model as a process model
generator. Proceedings of the 5th
international software process workshop
on Experience with software process
models (str. 43-45). Kennebunkport:
IEEE Computer Society Press.

Boehm, B., & Turner, R. (2015). The
incremental commitment spiral model
(ICSM): principles and practices for
successful systems and software.
Proceedings of the 2015 International
Conference on Software and System

Process (str. 175-176). New York:
ACM.

Cobb, C. G. (2015). The project managers
guide to mastering agile: Principles and
Practices for an Adaptive Approach.
Hoboken, New Jersey : John Wiley &
Sons.

Craddock, A., Richards, K., Tudor, D.,
Roberts, B., & Godwin, J. (2012). white
papers. Preuzeto sa Agile business:
https://www.agilebusiness.org

Dingsøyr, T., Nerur, S., Balijepally, V., &
Moe, N. B. (2012). A decade of agile
methodologies: Towards explaining agile
software development. The Journal of
Systems and Software, 1213-1221.

Dragan, B., Marija, T., & Zorica, M. (2013).
Risk Appraisal for software projects in
accordance with project management
maturity models. Serbian Project
Management Journal, 35-43.

DSDM Consortium. (2008). DSDM Atern
Handbook. Kent: DSDM Consortium.

DSDM Consortium. (2014). The DSDM Agile
Project Framework Handbook. Kent:
DSDM Consortium.

Dyba, T., & Dingsoyr, T. (2008). Empirical
studies of agile software development: A
systematic review. Trondheim: Inform.
Softw. Technol.

Hendrix, D. T., & Schneider, M. P. (2002).
NASA's TReK project: a case study in
using the spiral model of software
development. Communications of the
ACM - Supporting community and
building social capital, 152-159.

Highsmith, J., & Cockburn, A. (2001). Agile
Software Development: The Business of
Innovation. IEEE Computer Journal,
120-122 .

Ileva, S., Ivanov, P., & Stefanova, E. (2004).
Analysis of an agile methodology
implementation . Proceedings of 30th
Euromicro Conference (str. 326-333).
IEEE Computer Society Press.

Jennifer, S., & Peter, C. (1997). DSDM:
Dynamic Systems Development Method:
The Method in Practice. Boston:
Addison-Wesley Professional.

Larman, C., & Basili, V. R. (2003). Iterative
and Incremental Development: A Brief
History. IEEE Computer Journal, 47-56.

Mackenzie, A., & Monk, S. (2004). From
Cards to Code: How Extreme
Programming Re-Embodies

P. Bogojević

74

Programming as a Collective Practice.
Computer Supported Cooperative Work,
Volume 13, Issue 1.

Mann, C., & Maurer, F. (2005). A Case Study
on the Impact of Scrum. Proceedings of
the Agile Development Conference (str.
70-79). Washington: IEEE Computer
Society.

Martin , A., Biddle , R., & Noble, J. (2004).
The XP customer role in practice: three
studies. Proceedings of the Agile
Development Conference (str. 42-54).
Washington: IEEE Computer Society.

Nerur, S., Mahapatra, R., & Mangalaraj, G.
(2005). Challenges of Migrating to Agile
Methodologies. Communications of the
ACM - Adaptive complex enterprises ,
72-78.

Recker, J., Holten, R., Hummel, M., &
Rosenkranz, C. (2017). How Agile
Practices Impact Customer
Responsiveness and Development
Success: A Field Study. Project
Management Journal, 99-121.

Robinson, H. (2005). Organisational culture
and XP: three case studies. Proceedings
of the Agile Conference (ADC'05).

Robinson, H., & Sharp, H. (2001). The
characteristics of XP teams, in: Extreme
Programming and Agile Processes in
Software Engineering. Berlin: Lecture
Notes in Computer Science, vol. 3092,
Springer.

Sutherland, J., & Schwaber, K. (2007). The
Scrum Papers: Nuts, Bolts, and Origins
of an Agile Process. Cambridge:
Scruminc.

Takeuchi, H., & Nonaka, I. (1986). The New
New Product Development Game.
Harvard Business Review , 137-146.

Tudor, D., & Walter, G. A. (2006). Using an
Agile Approach in a Large, Traditional
Organization. Proceedings of AGILE
2006 Conference (AGILE'06) (str. 367 -
373). Washington: IEEE Computer
Society.

Young, S., Edwards, H., Mcdonald, S., &
Thompson, J. (2005). Personality
characteristics in an XP team: A
reperitory grid study. Proceedings of
Human and Social Factors of Software
Engineering. St. Louis.

